854. K-Similar Strings ¶
Problem
Strings s1
and s2
are k
-similar (for some non-negative integer k
) if we can swap the positions of two letters in s1
exactly k
times so that the resulting string equals s2
.
Given two anagrams s1
and s2
, return the smallest k
for which s1
and s2
are k
-similar.
Example 1:
Input: s1 = "ab", s2 = "ba" Output: 1 Explanation: The two string are 1-similar because we can use one swap to change s1 to s2: "ab" --> "ba".
Example 2:
Input: s1 = "abc", s2 = "bca" Output: 2 Explanation: The two strings are 2-similar because we can use two swaps to change s1 to s2: "abc" --> "bac" --> "bca".
Constraints:
1 <= s1.length <= 20
s2.length == s1.length
s1
ands2
contain only lowercase letters from the set{'a', 'b', 'c', 'd', 'e', 'f'}
.s2
is an anagram ofs1
.