1775. Equal Sum Arrays With Minimum Number of Operations ¶
Problem
You are given two arrays of integers nums1
and nums2
, possibly of different lengths. The values in the arrays are between 1
and 6
, inclusive.
In one operation, you can change any integer's value in any of the arrays to any value between 1
and 6
, inclusive.
Return the minimum number of operations required to make the sum of values in nums1
equal to the sum of values in nums2
. Return -1
βββββ if it is not possible to make the sum of the two arrays equal.
Example 1:
Input: nums1 = [1,2,3,4,5,6], nums2 = [1,1,2,2,2,2] Output: 3 Explanation: You can make the sums of nums1 and nums2 equal with 3 operations. All indices are 0-indexed. - Change nums2[0] to 6. nums1 = [1,2,3,4,5,6], nums2 = [6,1,2,2,2,2]. - Change nums1[5] to 1. nums1 = [1,2,3,4,5,1], nums2 = [6,1,2,2,2,2]. - Change nums1[2] to 2. nums1 = [1,2,2,4,5,1], nums2 = [6,1,2,2,2,2].
Example 2:
Input: nums1 = [1,1,1,1,1,1,1], nums2 = [6] Output: -1 Explanation: There is no way to decrease the sum of nums1 or to increase the sum of nums2 to make them equal.
Example 3:
Input: nums1 = [6,6], nums2 = [1] Output: 3 Explanation: You can make the sums of nums1 and nums2 equal with 3 operations. All indices are 0-indexed. - Change nums1[0] to 2. nums1 = [2,6], nums2 = [1]. - Change nums1[1] to 2. nums1 = [2,2], nums2 = [1]. - Change nums2[0] to 4. nums1 = [2,2], nums2 = [4].
Constraints:
1 <= nums1.length, nums2.length <= 105
1 <= nums1[i], nums2[i] <= 6