2163. Minimum Difference in Sums After Removal of Elements ¶
Problem
You are given a 0-indexed integer array nums
consisting of 3 * n
elements.
You are allowed to remove any subsequence of elements of size exactly n
from nums
. The remaining 2 * n
elements will be divided into two equal parts:
- The first
n
elements belonging to the first part and their sum issumfirst
. - The next
n
elements belonging to the second part and their sum issumsecond
.
The difference in sums of the two parts is denoted as sumfirst - sumsecond
.
- For example, if
sumfirst = 3
andsumsecond = 2
, their difference is1
. - Similarly, if
sumfirst = 2
andsumsecond = 3
, their difference is-1
.
Return the minimum difference possible between the sums of the two parts after the removal of n
elements.
Example 1:
Input: nums = [3,1,2] Output: -1 Explanation: Here, nums has 3 elements, so n = 1. Thus we have to remove 1 element from nums and divide the array into two equal parts. - If we remove nums[0] = 3, the array will be [1,2]. The difference in sums of the two parts will be 1 - 2 = -1. - If we remove nums[1] = 1, the array will be [3,2]. The difference in sums of the two parts will be 3 - 2 = 1. - If we remove nums[2] = 2, the array will be [3,1]. The difference in sums of the two parts will be 3 - 1 = 2. The minimum difference between sums of the two parts is min(-1,1,2) = -1.
Example 2:
Input: nums = [7,9,5,8,1,3] Output: 1 Explanation: Here n = 2. So we must remove 2 elements and divide the remaining array into two parts containing two elements each. If we remove nums[2] = 5 and nums[3] = 8, the resultant array will be [7,9,1,3]. The difference in sums will be (7+9) - (1+3) = 12. To obtain the minimum difference, we should remove nums[1] = 9 and nums[4] = 1. The resultant array becomes [7,5,8,3]. The difference in sums of the two parts is (7+5) - (8+3) = 1. It can be shown that it is not possible to obtain a difference smaller than 1.
Constraints:
nums.length == 3 * n
1 <= n <= 105
1 <= nums[i] <= 105