2518. Number of Great Partitions ¶
Problem
You are given an array nums
consisting of positive integers and an integer k
.
Partition the array into two ordered groups such that each element is in exactly one group. A partition is called great if the sum of elements of each group is greater than or equal to k
.
Return the number of distinct great partitions. Since the answer may be too large, return it modulo 109 + 7
.
Two partitions are considered distinct if some element nums[i]
is in different groups in the two partitions.
Example 1:
Input: nums = [1,2,3,4], k = 4 Output: 6 Explanation: The great partitions are: ([1,2,3], [4]), ([1,3], [2,4]), ([1,4], [2,3]), ([2,3], [1,4]), ([2,4], [1,3]) and ([4], [1,2,3]).
Example 2:
Input: nums = [3,3,3], k = 4 Output: 0 Explanation: There are no great partitions for this array.
Example 3:
Input: nums = [6,6], k = 2 Output: 2 Explanation: We can either put nums[0] in the first partition or in the second partition. The great partitions will be ([6], [6]) and ([6], [6]).
Constraints:
1 <= nums.length, k <= 1000
1 <= nums[i] <= 109