Skip to content

2826. Sorting Three Groups 👍

Problem

You are given a 0-indexed integer array nums of length n.

The numbers from 0 to n - 1 are divided into three groups numbered from 1 to 3, where number i belongs to group nums[i]. Notice that some groups may be empty.

You are allowed to perform this operation any number of times:

  • Pick number x and change its group. More formally, change nums[x] to any number from 1 to 3.

A new array res is constructed using the following procedure:

  1. Sort the numbers in each group independently.
  2. Append the elements of groups 1, 2, and 3 to res in this order.

Array nums is called a beautiful array if the constructed array res is sorted in non-decreasing order.

Return the minimum number of operations to make nums a beautiful array.

 

Example 1:

Input: nums = [2,1,3,2,1]
Output: 3
Explanation: It's optimal to perform three operations:
1. change nums[0] to 1.
2. change nums[2] to 1.
3. change nums[3] to 1.
After performing the operations and sorting the numbers in each group, group 1 becomes equal to [0,1,2,3,4] and group 2 and group 3 become empty. Hence, res is equal to [0,1,2,3,4] which is sorted in non-decreasing order.
It can be proven that there is no valid sequence of less than three operations.

Example 2:

Input: nums = [1,3,2,1,3,3]
Output: 2
Explanation: It's optimal to perform two operations:
1. change nums[1] to 1.
2. change nums[2] to 1.
After performing the operations and sorting the numbers in each group, group 1 becomes equal to [0,1,2,3], group 2 becomes empty, and group 3 becomes equal to [4,5]. Hence, res is equal to [0,1,2,3,4,5] which is sorted in non-decreasing order.
It can be proven that there is no valid sequence of less than two operations.

Example 3:

Input: nums = [2,2,2,2,3,3]
Output: 0
Explanation: It's optimal to not perform operations.
After sorting the numbers in each group, group 1 becomes empty, group 2 becomes equal to [0,1,2,3] and group 3 becomes equal to [4,5]. Hence, res is equal to [0,1,2,3,4,5] which is sorted in non-decreasing order.

 

Constraints:

  • 1 <= nums.length <= 100
  • 1 <= nums[i] <= 3