2902. Count of Sub-Multisets With Bounded Sum ¶
Problem
You are given a 0-indexed array nums
of non-negative integers, and two integers l
and r
.
Return the count of sub-multisets within nums
where the sum of elements in each subset falls within the inclusive range of [l, r]
.
Since the answer may be large, return it modulo 109 + 7
.
A sub-multiset is an unordered collection of elements of the array in which a given value x
can occur 0, 1, ..., occ[x]
times, where occ[x]
is the number of occurrences of x
in the array.
Note that:
- Two sub-multisets are the same if sorting both sub-multisets results in identical multisets.
- The sum of an empty multiset is
0
.
Example 1:
Input: nums = [1,2,2,3], l = 6, r = 6 Output: 1 Explanation: The only subset of nums that has a sum of 6 is {1, 2, 3}.
Example 2:
Input: nums = [2,1,4,2,7], l = 1, r = 5 Output: 7 Explanation: The subsets of nums that have a sum within the range [1, 5] are {1}, {2}, {4}, {2, 2}, {1, 2}, {1, 4}, and {1, 2, 2}.
Example 3:
Input: nums = [1,2,1,3,5,2], l = 3, r = 5 Output: 9 Explanation: The subsets of nums that have a sum within the range [3, 5] are {3}, {5}, {1, 2}, {1, 3}, {2, 2}, {2, 3}, {1, 1, 2}, {1, 1, 3}, and {1, 2, 2}.
Constraints:
1 <= nums.length <= 2 * 104
0 <= nums[i] <= 2 * 104
- Sum of
nums
does not exceed2 * 104
. 0 <= l <= r <= 2 * 104